Giải phương trình vô tỉ bằng phương pháp liên hợp - phiên bản 1

Giải phương trình vô tỉ bằng phương pháp liên hợp Cho hàm số  , xác định trên  Ta biết   là nghiệm phương trình  Mà theo định lí Bơzu ...

Giải phương trình vô tỉ bằng phương pháp liên hợp

Cho hàm số , xác định trên 
Ta biết  là nghiệm phương trình 
Mà theo định lí Bơzu nếu  là nghiệm của đa thức  thì
. Từ đây ta có nhận xét:
Nếu là một nghiệm của phương trình  thì ta có thể đưa phương trình  về dạng  và khi đó việc giải phương trình  quy về giải phương trình  Ta xét ví dụ sau:

Ví dụ 1: Giải phương trình:
(HVKTQS 2000).

Giải: Điều kiện :
Ta thấy  là một nghiệm của phương trình ( ta nghĩ đến  vì khi đó  và  là những số chính phương) do đó ta có thể đưa phương trình về dạng:  nên ta biến đổi phương trình như sau: , vấn đề còn lại của chúng ta là phải phân tích  ra thừa số  (Chú ý khi  thì , vì định lí Bơzu chỉ áp dụng cho đa thức nên ta phải biến đổi biểu thức này về dạng có mặt đa thức, tức là ta đưa về dạng 
điều này giúp ta liên tưởng đến đẳng thức : nên ta biến đổi : 

Suy ra phương trình  đến đây ta chỉ cần giải phương trình: 

Vậy phương trình đã cho có hai nghiệm  và 

Nhận xét: 1) Qua ví dụ trên ta thấy để bỏ căn thức ta sử dụng hằng đẳng thức:

hai biểu thức  và  ta gọi là hai biểu thức liên hợp của nhau. Nên phương pháp trên ta gọi là phương pháp nhân lượng liên hợp.
2) Với phương pháp này điều quan trọng là ta phải biết được một nghiệm của phương trình, từ đó ta mới định hướng được cách biến đổi để là xuất hiện nhân tử chung. Để nhẩm nghiệm ta có thể sử dụng máy tính bỏ túi 570MS hoặc 570ES .

Ví dụ 2: Giải phương trình :
(THTT).
Giải: Điều kiện : 
Nhận thấy phương trình trên vẫn có nghiệm  nên ta nghĩ đến cách giải phương trình trên bằng phương pháp nhân lượng liên hợp.


Ta có: 
Mặt khác  vô nghiệm.
Vậy phương trình đã cho có nghiệm duy nhất: 

Nhận xét : * Ta có dạng tổng quát của phương trình trên là:
 (Điều kiện :).
* Bằng máy tính ta có thể thấy được phương trình (*) vô nghiệm do đó ta nghĩ đến chứng minh phương trình (*) vô nghiệm. Thayvào phương trình (*) thì do đó ta tìm cách chứng minh 

Ví dụ 3: Giải phương trình :
 (THTT).
Giải: Điều kiện: 
Ta thấy phương trình có một nghiệm nên ta phân tích ra thừa số 
Ta có:






(Do biểu thức trong dấu 
Vậy phương trình có nghiệm duy nhất x=\frac{1}{2}.
Ví dụ 4: Giải phương trình:

 Điều kiện: 
Nhận thấy phương trình có một nghiệm 
Phương trình 



Kết hợp với phương trình ban đầu ta có :
 thử lại ta thấy hai nghiệm này đều thỏa mãn phương trình.
Vậy phương trình đã cho có ba nghiệm: 

Nhận xét: Để giải phương trình (*) ta phải kết hợp với phương trình ban đầu. Ta chú ý rằng phép biến đổi này là phép biến đổi hệ quả do đó sau khi giải xong ta phải thử lại các nghiệm để loại đi những nghiệm ngoại lai.

Trong các ví dụ trên ta thấy mỗi phương trình đều có nghiệm hữu tỉ do đo việc dự đoán nghiệm tương đối dễ. Tuy nhiên trong nhiều trường hợp việc đoán nghiệm không được dễ dàng, đặc biệt là khi tất cả các nghiệm của phương trình đều là nghiệm vô tỉ! Trong trường hợp này chúng ta phải xử lí thế nào? Ta xét các ví dụ sau:
 Trả lời ngay kèm theo trích dẫn này

  #2




Ví dụ 5: Giải phương trình :

Giải: Do  nên 
Bằng máy tính ta thấy được phương trình không có nghiệm hữu tỉ, mà chỉ có hai nghiệm vô tỉ. Ta thấy nếu  thì hai vế của phương trình bằng nhau nên ta phân tích ra thừa số 
Ta có:


(do x nên khi đặt  làm thừa số thì biểu thức trong dấu (.) luôn dương ).
 là nghiệm của phương trình đã cho.
Chú ý : Mẫu chốt của bài toán là ta có nhận xét (*), từ đó ta mới định hướng tìm cách phân tích ra thừa số . Tuy nhiên trong nhiều bài toán thì việc tìm được nhân tử chung không còn đơn giản vậy nữa.

Ví dụ 6: Giải phương trình:

Giải:
Với phương trình ta không gặp được sự may mắn như phương trình trên, bằng cách sử dụng MTBT ta thấy phương trình có hai nghiệm  vô tỉ, nếu ta linh hoạt một chút ta sẽ nghĩ đến thừa số chung là một tam thức bậc hai có hai nghiệm . Vấn đề tam thức ở đây là tam thức nào? Các bạn thử nghĩ xem nếu biết hai nghiệm của tam thức thì ta có thể xác định được tam thức đó hay không? Chắc chúng ta sẽ trả lời là có nhờ vào định lí đảo của định lí Viet. Áp dụng định lí Viet ta tính được ( sử dụng MTBT) . Vậy thừa số chúng mà ta cần phân tích là tam thức nên ta biến đổi như sau:
Phương trình 




 là nghiệm của phương trình.
Chú ý : 1) Để tạo ra thừa số  ngoài cách biến đổi như trên ta còn có thể làm cách khác như sau:
Cách 2: Vì  không là nghiệm phương trình nên.
Phương trình


Vì (*) vô nghiệm, nên phương trình có hai nghiệm: x=1\pm \sqrt{7}.
2) Nếu như chúng ta không có máy tính để xác định được thừa số chung là thì ta là thế nào ?.
Trước hết ta thêm một lượng  vào hai vế:


Ta chọn  sao cho:  từ đây ta có: 
3) Ta thấy cả hai cách biến đổi đều làm xuất hiện thừa số chung  Tuy nhiên cách thứ 2 sẽ thuận lợi hơn cách thứ nhất vì ở cách thứ 2 sau khi đặt thừa số ta chỉ còn phải giải quyết phương trình (*), còn với cách thứ nhất thì ta phải giải quyết biểu thức trong dấu (.) phức tạp hơn nhiều. Hơn nữa với cách biến đổi thứ hai chúng ta dễ sáng tạo ra các bài toán hơn cách thứ nhất.

Ví dụ 7: Giải phương trình :

Giải: Điều kiện : 
Ta thấy  không là nghiệm của phương trình nên ta có:
Phương trình
Bằng cách làm như đã nêu ở phần nhận xét ta tìm được , do đó ta thêm vào hai vế của phương trình lượng 
Phương trình 

* Nếu 

Khi đó (1) đúng  là một nghiệm của phương trình.
* Nếu

Ta có: (a) có hai nghiệm và

(b) 


Vậy phương trình có bốn nghiệm: 
Chú ý : Khi muốn thêm bớt bằng cách nhân, chia một biểu thức thì ta phải kiểm tra xem biểu thức đó có luôn khác không hay không ?

Ví dụ 8: Giải phương trình:

Giải: Đk : 
Đặt : 
Ta thấy phương trình có nghiệm .T a biến đổi như sau:


(Vì hai pt:và  vô nghiệm ). 
Kết hợp (I) và (II) ta có hệ :

Thay vào phương trình ban đầu ta thấy chỉ nghiệm thỏa mãn.
Vậy phương trình đã cho có hai nghiệm  và 
Ví dụ 9 : Giải bất phương trình : 
Giải: Điều kiện :
Bất phương trình




Kết hợp điều kiện suy ra nghiệm bất phương trình : .
Như vậy qua một số ví dụ trên chúng ta thấy được sự đặc sắc trong phương pháp dùng phép liên hợp để giải phương trình và bất phương trình vô tỷ.

Luyện thi An Dương

Luyện thi kiến thức Toán Phổ Thông - Đại học. Đồng thời có các chuyên đề , định hướng về hướng nghiệp - kỹ năng sống.

Có thể bạn quan tâm

Có 0 nhận xét Đăng nhận xét